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Abstract In this paper we describe our solution to a real-time distributed track-
ing problem. The system works not by finding an optimal solution, but
through a satisficing search for an allocation that is “good enough” to
meet the specified resource requirements, which can then be revised over
time if needed. The agents in the environment are first organized by
partitioning them into sectors, reducing the level of potential interac-
tion between agents. Within each sector, agents dynamically specialize
to address scanning, tracking, or other goals, which are instantiated
as task structures for use by the SRTA control architecture. These el-
ements exist to support resource allocation, which is directly effected
through the use of the SPAM negotiation protocol. The agent problem
solving component first discovers and generates commitments for sen-
sors to use for gathering data, then determines if conflicts exist with
that allocation, finally using arbitration and relaxation strategies to re-
solve such conflicts. We have empirically tested and evaluated these
techniques in both the Radsim simulation environment and using the
hardware-based system.
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1. Overview

The UMass approach to the distributed sensor network challenge
problem consists of three major architectural and behavioral contribu-
tions. First, each of the sensors is controlled by a single agent which
exists as part of a larger, heterogeneous organizational structure. This
structure helps bound and target the computation necessary to solve
the distributed tracking problem by associating individual agents with
one or more roles within that organization, each taking responsibility
for different parts of the overall goal. Second, individual agents are so-
phisticated, autonomous problem solvers. Each incorporates a domain
independent soft real-time control architecture (SRTA) which is used
to model and control the activities of the agent, and a domain specific
problem solving component which reasons about and reacts to the sur-
rounding environment. Finally, a negotiation mechanism and protocol
(SPAM) is employed to allocate sensor resources and resolve conflicts.
Agents in the organization responsible for tracking use this protocol to
ensure sufficient quantities and qualities of data are achieved for all tar-
gets to be tracked, if at all possible.

Each of these technologies plays an important role solving the sensor
allocation allocation problem. The SPAM protocol [Mailler et al., 2001]
lies at the heart of this process, enabling agents to request sensors, and
then dynamically detect and resolve conflicts when they arise by using
distributed negotiation. Where SPAM resolves conflict between agents,
the SRTA architecture [Horling et al., 2002] resolves conflicts that exist
within an agent, by modeling tasks and commitments and using several
scheduling techniques to manage local activities as best possible. This
allows arbitrary allocations to accrue quality, even if some level of unre-
solved conflict exists. The organizational design acts to limit the distance
over which information must be propagated, which both reduces com-
munication effort and facilitates the allocation and negotiation process.
All of these technologies must operate in real-time to be effective in this
distributed sensor network environment.

A high-level view of the solution described in this chapter can be seen
in Figure 1.1. Each sensor is controlled by a single agent, and the orga-
nizational design divides these sensor agents into location-based sectors.
Each of these sectors has a sector manager, a role in the organization
which has several responsibilities associated with information flow and
activity within the sector. Among these responsibilities is the dissemina-
tion of a scan schedule to each of the sensors in its sector, which specifies
the rate and frequency which should be used to scan for new targets.
This information is used by each sensor to create a description of the
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scanning task, which is in turn used by the SRTA architecture to sched-
ule local activities. When a new target is detected, the sector manager
selects a track manager, a different organizational role responsible for
tracking that target as it moves through the environment. This entails
estimating future location and heading, gathering available sensor infor-
mation, requesting and negotiating over the sensors, and fusing the data
they produce. SPAM and the problem solver identify desired sensors,
and request commitments from them. Upon receipt of such a commit-
ment, a sensor takes on a data collection role. Like the scan schedule,
these commitments are used to generate task descriptions used by SRTA
to schedule local activities. If conflicting commitments are received by
a sensor, which implies that the agent has been asked to perform mul-
tiple concurrent data collection roles, SRTA will attempt to satisfy all
requests as best possible. This provides a window of marginal qual-
ity where SPAM can detect the conflict, and then negotiate with the
competing agent to find an equitable long-term solution. As data are
gathered, they are fused and interpreted to estimate the target’s loca-
tion, which allows the process to continue.

The connection between resource allocation and tracking is straight-
forward - in order to track a particular target, sensor resources must
be allocated in such a way that the data they produce can be used
to determine a target’s position. Furthermore, this needs to be done in
such a way that tasks competing for a sensor’s attention are not starved.
The need to triangulate a target’s position requires frequent, coordinated
actions among the agents - ideally three or more sensors taking measure-
ments of a target at approximately the same time. Early versions of the
ANTSs environment required at least three coordinated measurements
per track data point. While the current implementation can interpret
based on a single measurement, multiple coordinated measurements will
better reduce uncertainty, so coordinating the activities of the agents is
still a beneficial strategy. In order to produce an accurate track, the sen-
sors must therefore minimize the amount of time between measurements
during triangulation, and maximize the number of triangulated posi-
tions. Ignoring resources, an optimal tracking solution would have all
agents capable of tracking the target taking measurements as frequently
as possible. Limited communication and competition from other track-
ing and scanning tasks, however, restrict our ability to coordinate and
implement such an aggressive strategy. Low communication bandwidth
hinders complex coordination and negotiation, limited processor power
prevents exhaustive planning and scheduling, and restricted sensor usage
creates a tradeoff between discovering new targets and tracking existing
ones.



The real-time nature of this problem presents another set of compli-
cations. While schedules and commitments may specify precise instants
in time, it can be difficult to meet these deadlines in the face of uncer-
tain action durations and competing meta-level activities or local pro-
cesses. For example, the scheduling and reasoning mechanisms of the
agent clearly require some amount of time and computational resources,
which will then compete with the agent’s scheduled activities on a single
processor system. A viable solution must be able to work effectively in an
environment where a certain amount of temporal imprecision may exist,
and where commitments or actions may fail because they do not meet
timing constraints. This architecture does not directly reason about or
estimate the effects of meta-level activities, but instead copes with such
uncertainty by generating schedules which generally contain a sufficient
amount of slack time for all activities to coexist. A more explicit, and
likely more reliable solution would reason about the effects of meta-level
activities directly, as in [Raja and Lesser, 2002].

These and other characteristics of the environment contribute to a
large degree of uncertainty the solution must handle. Noisy measure-
ments, unreliable communications, varying hardware speeds, and sensor
availability also make knowing a target’s precise location and velocity
very difficult. This in turn makes predicting and planning for future
events more difficult, which subsequently increases usage of resources
when unreliable data directs high level reasoning to incorrect conclu-
sions and actions.

In the remainder of this chapter, we will describe our solution to these
complicated problems. The three main components of this solution, it’s
organization, agent control mechanisms and resource allocation protocol,
are described in more detail in the following sections. Section 1.5 is a
discussion of our results and experiences, and the chapter will conclude
with some final thoughts and discussion of future work.

2. Organizational Design

The notion of “organizational design” is used in many different fields,
and generally refers to how entities in a society act and relate with one
another. This is true of multi-agent systems, where the organizational
design of a system can include a description of what types of agents
exist in the environment, what roles they take on, and how they interact
with one another. The objectives of a particular design will depend on
the desired solution characteristics; so for different problems one might
specify organizations which aim towards scalability, reliability, speed, or
efficiency, among other things.
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Figure 1.1. High-level architecture. A: sectorization of the environment, B: distribu-
tion of the scan schedule, C: negotiation over tracking measurements, and D: fusion
of tracking data.

The organizational design used in this solution primarily attempts to
address the scalability problem, by imposing limits on how far certain
classes of information must propagate. As will be seen below, this is
done at the expense of reaction speed, because by limiting the scope any
single agent has, one necessarily increases the required overhead when
the agent’s task moves outside that scope.

The environment itself is divided into a series of sectors, each a non-
overlapping, identically sized, rectangular portion of the available area,
shown in figure 1.1A. The purpose of this division, as will be shown
below, is to limit the interactions needed between sensors, an important
element of our attempt to make the solution scalable. In this figure,
sensors are represented as divided circles, where each 120 degree arc
represents a direction the node can sense in. As agents come online,
they must first determine which sectors they can affect. Because the
environment itself is bounded, this can be trivially done by providing
each agent the height and width of the sectors. The agents can then use
this information, along with their known positions and sensor radii, to
determine which sectors they are capable of scanning in. We use this
technique to dynamically adapt the agent population for scanning and
tracking activities to better partition and focus the flow of information.

Within a given sector, agents may work concurrently on one or more of
several high level goals: managing a sector, tracking a target, producing
sensor data, and processing sensor data. The organizational hierarchy
is abstractly represented in figure 1.2. The organizational leader of each
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Figure 1.2. Overview of the agent’s organizational hierarchy, with some information
flows represented.

sector is a single sector manager, which serves as the locus of activity
for that sector. This manager generates and distributes plans (to the
sensor data producers) needed to scan for new targets, stores and pro-
vides local sensor information as part of a directory service, and assigns
target managers. The sector managers act as hubs within a nearly-
decomposable hierarchical organization, by directly specifying scanning
activities, and then selecting agents to oversee tracking activities. They
also concentrate nonlocal information, facilitating the transfer of that
knowledge to interested parties. Individual track managers initially ob-
tain their information from their originating sector manager, but will
also interact directly, though less frequently, with other sector and track
managers, and thus do not follow a fixed chain of command or operate
solely within their parent sector as one might see in a fully-decomposable
organization. Track managers will also form commitments with one or
more agents to gather sensor data, but this relationship is on a volun-
tary basis, and that gathering agent’s behavior is ultimately determined
locally.

Because much of the information being communicated is contained
within sectors, the size and shape of the sector has a tangible effect on
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the system’s performance. If the sector is too large, and contains many
sensors, then the communication channel used by the sector manager
may become saturated. If the sector is too small, then track managers
may spend excessive effort sending and receiving information to different
sector managers as its target moves through the environment. We found
empirically that a reasonable sector would contain 8 sensors, but would
still function with as many as 10 or as few as 5. The physical dimensions
of such a sector depend on the density of the sensors, and in different
environments one would need to take into account sensor range, com-
munication medium characteristics and maximum target speed. Further
information on partitioning agent populations, including a more sophis-
ticated technique which utilizes heterogeneous regions, can be found in
[Sims et al., 2003].

To see how the organization works in practice, consider a scenario
starting with agents determining what sectors they can affect, and which
agents are serving as the managers for those sectors. Ideally, the sec-
tor managerial duty would be delegated and discovered dynamically at
runtime, but due to the lack of a true broadcast capability in the RF
communication medium, we statically define and disburse this informa-
tion a prioril. In figure 1.1, these sector managers are represented with
shaded inner circles. Once an agent recognizes its manager(s), it sends
each a description of its capabilities. This includes such things as the
position, orientation, and range of the agent’s sensor. The manager then
has the task of using this data to organize the scanning schedule for its
sector. The goal of the scan schedule is to use the sensors available to it
to perform inexpensive, fast sensor sweeps of the area, in an effort to dis-
cover new targets. The manager formulates a schedule indicating where
and when each sensor should scan, and negotiates with each agent over
their respective responsibilities in that schedule (see figure 1.1B). The
manager does not strictly assign these tasks - the agents have autonomy
to locally decide what action gets performed when. This is important
because sensors can potentially scan in multiple sectors, thus there is
the possibility that an agent may receive multiple, conflicting requests
for commitments from different sector managers. The agent’s autonomy
and associated local controller permit the agent itself to be responsible
for detecting and resolving these conflicts. If one receives conflicting
requests for commitments, it can elect to delay or decommit as needed.

LA limited broadcast capability does exist, which can reach all sensors listening on a single
channel. It is not possible in this architecture to broadcast a single message to agents which
are using different channels.
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Figure 1.3. An abstraction of the messages and reasoning used for target detection

by sensor agents, sector and track managers.
Shaded sensors in the previous figure show agents receiving multiple scan

schedule commitments.
Once the scan is in progress, individual sensors report any positive de-
tections to the sector manager which assigned them the scanning task.
These detections then be used to spawn a new track manager as shown
in Figure 1.3. Internally, the sector manager maintains a list of all local
agents that currently perform the role of track manager, and location
estimates for the targets they are tracking. This location estimate is
used to determine the likelihood of the positive detection being a new
target, or one already being tracked. If the target is new, the manager
uses a range of criteria to select one of the agents in its sector to be
the track manager for that target. Not all potential track managers are
equally qualified, and an uniformed choice can lead to very poor tracking
behavior if the agent is overloaded or shares communication bandwidth
with other garrulous agents. Therefore, in making this selection, the
manager considers the agents’ estimated loads, communication chan-
nel assignments, geographic locations and activity histories. Ideally, it
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will select an agent which has minimal channel overlap and is not cur-
rently tracking a target, but which has tracked one previously. This will
minimize the potential for communication collisions, which occur if two
agents on the same channel attempt to send data at the same time, but
maximize the potential amount of cached organizational data the agent
can be reuse. As we have seen previously, this notion of limited commu-
nication is an important motivating factor and recurring theme in this
architecture which contributes to the organizational structure, role selec-
tion, protocol design and the frequency and verbosity of communication
actions.

The assigned track manager (shown in figure 1.1C with a blackened
inner circle) is responsible for organizing the tracking of the given tar-
get. To do this, it first discovers sensors capable of detecting the target,
and then negotiates with members of that group to gather the necessary
data. Discovery is done using the directory service provided by the sector
managers. One or more queries are made asking for sensors which can
scan in the area the target is predicted to occupy. The track manager
must then determine when the scans should be performed, considering
such things as the desired track fidelity and time needed to perform the
measurement, and negotiate with the discovered agents to disseminate
this goal (see figure 1.1C). As with scanning, conflicts can arise between
the new task and existing commitments at the sensor, which the agent
must resolve locally. The source of a given commitment can identify
how important its task is to it, which is normalized in such a way that it
has the correct importance relative to others in a more global sense. For
instance, if a track manager determines that a sensor is particularly use-
ful, based either on its location relative to the estimated position of the
target or the scarcity of viable alternative sensors, this can be reflected
in the importance value of the commitment. These importance values
then allow the local agent to effectively discriminate among conflicted
tasks with an eye towards global social welfare.

The data gathered from individual sensors is collected by an agent
responsible for fusing the data and extending the computed track (see
figure 1.1D). In a general sense, this data fusion agent could be any
agent in the population able to communicate efficiently with both the
data sources and the ultimate destination of the tracking data. How-
ever, the data fusion itself is fairly lightweight, and thus does not benefit
from distribution for load balancing purposes, and transferring the fu-
sion data results in an additional delay while it is being communicated
to the track manager. Therefore, our organization assigns this fusion
task to the track manager itself, which avoids this delay with relatively
little overhead. If the data values returned are of high enough quality,
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and the agent determines those measurements were taken from the cor-
rect target, then they are used to triangulate the position of the target
at that time. This data point is then added to the track, which itself
is distributed back to the track manager to be used as a predictive tool
when determining where the target is likely to be in the future. At this
point the track manager must again decide which agents are needed and
where they should scan, and the sequence of activities is repeated. Fur-
ther details describing the track manager, including the tracking process
in general and the tradeoffs associated with communication decisions and
predictive capacity will be covered in section 1.4.

Partitioning the environment reduces the amount of information and
processing agents must perform for several different tasks. For example,
generating a coherent scan schedule for a group of sensors is simplified by
only taking into account a tractable number of them. Similarly, when a
new target is detected as a result of a scan, that information can be sent
to only the appropriate sector manager, which can determine directly if
it is a new or existing target based on local information. Sectors also fa-
cilitate gathering data about the sensors themselves, as track managers
need only perform a single query to the appropriate sector manager to
discover all the sensors available within that region. In fact, the parti-
tioning makes nearly every aspect of this solution scalable to arbitrary
numbers, with the exception of negotiation, which has its own solution
to this problem, as shown later. As a side effect, partitioning does reduce
the system’s reactivity, because an extra step may be required to fetch
information that is not available locally. We cope with this problem
wherever possible by caching such data to avoid redundant queries, and
by assigning new roles whenever possible to agents which have served
that same role in the past, to take advantage of that cached data.

Although not required in the scenarios presented in this book, it is
interesting to note the applicability of this organization to situations
where agents have an additional limitation or attenuation of communi-
cation capability based on the geographic distance separating the par-
ticipants. In this case, this partitioned organization could serve as the
basis of an ad-hoc network, where messages are routed from one sector
to the next, using the organizational structure as a guide, until they
reach their destination. This further emphasizes the notion that “local”
communication is more efficient, and the locality of information should
be exploited by the organization to take advantage of it. The technique
of migrating the tracking responsibility through the agent population as
the target moves, which is also covered in section 1.4, is a direct result
of this.
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3. Agent Architecture

The structure and function of agents used in this solution can be
roughly divided into two parts: elements that are roughly problem-
independent, and those that are relatively problem-dependent. In this
section we describe the former part, consisting of the basic framework
used to build the agents, and the control engine which drives much of its
behavior. The latter part, consisting of the domain problem solving ex-
pert and the resource allocation protocol, are covered in the subsequent
section.

3.1 Java Agent Framework

We use the Java Agent Framework (JAF) [Horling and Lesser, 1998]
as the foundation to our implemented solution. JAF is a component-
oriented framework, similar to Sun’s JavaBeans technology. The JAF
framework consists of a number of generic components that can be used
directly or by subclassing them, along with a set of guidelines specifying
how to implement, integrate, and use new components. Components
can interact in three different ways, each having different flexibility and
efficiency characteristics: direct method invocation, through event (mes-
sage) passing among components, or indirectly through shared data.

JAF was designed with extensibility and reusability in mind. The
use of generic components, or derived components with similar APIs, al-
lows for a plug-and-play type architecture where the designer can select
those components they need without sacrificing compatibility with the
remainder of the system. The designer can therefore pick and choose
from the pre-written components, derive those that aren’t quite what
he or she needs, and add new components for new technologies. For
example, generic components exist to provide services for such things as
communication, execution and directory services. In the environment
presented in this paper, specialized facilities are needed for communica-
tion and execution. Derived versions of these two components were writ-
ten, overriding such things as how messages are sent or how certain ac-
tions are performed. The communication component was also extended
to provide a reliable messaging service, using sequence numbers, ac-
knowledgments and retransmits to cope with the unreliable RF medium.
These derived components were then inserted in place of their generic
counterparts within the agent. The unmodified directory service compo-
nent can still make use of the communication component, and if needed,
communication can also use the directory services. In all, 17 compo-
nents were used in the agents described in this paper: 10 were generic,
3 were derived, and 4 were new. This translates to roughly 20,000 lines
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Figure 1.4. A JAF agent architecture, modeled after the one used by the agents
in the DSN environment. Broad levels of abstraction are shown, along with typical
components which reside at those levels.

of reused, domain independent code, and 8,000 lines of domain depen-
dent code. The specific components which were used to create the agents
are: Control, Log, State, Execute, Communicate, WindowManager, Ob-
serve, Sensor, ActionMonitor, PreprocessTaemsReader, DirectorySer-
vice, ResourceModeler, PartialOrderScheduler, PeriodicTaskController,
ScanScheduler, Coordinate, and AntProblemSolver.

JAF was used in this architecture to create a layered agent, as shown
in figure 1.4. Here, the problem solver and negotiation components
reside at the highest level, where they deal with problems at a coarse,
conceptual level of abstraction. These components will typically interact
with those below it, in this case by passing goals and tasks to the soft-
real time architecture, which reasons about actions and schedules. This
in turn will make use of the lowest agent level to gather data and actually
perform those actions.

While layers of abstraction and encapsulation certainly are not new
ideas, their incorporation into this architecture is important because
they both facilitate construction and motivate reusability and clean soft-
ware design. A variety of components currently exist in JAF, providing
services from logging and state maintenance to scheduling and problem
solving.

3.1.1 Communication. The communication component used
by the agent is worth examining because of the adaptations that were
made to work in the ANTSs environment. The designed communication
medium used between sensors is a radio-frequency, wireless broadcast
technology. It consists of eight independent channels, each of which of-
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fers a theoretical data rate of approximately 14.4 Kbp. Data transfer
is unreliable, so collisions may result in data loss, although a checksum
prevents garbled messages from being given to the agent. In our archi-
tecture, agents were uniformly assigned channels to receive messages on,
and were required to change their transmission channel to match the
receive channel of the destination.

The central issue when using the RF communication medium (or op-
erating in simulations of it) is the relatively low bandwidth. The the-
oretical data rate, combined with the potential for message loss caused
by collisions, permitted only a handful of messages to be successfully
transferred per second on a given channel. When one considers that a
track manager might need to receive messages from three or four data
sources, negotiate with one or more track managers, and get state infor-
mation from the sector manager - all in the span of a second or two - this
limitation can greatly restrict communication, and we have implemented
strategies at several levels within our agents to cope with it.

Several mechanisms were built into the communication component
used by the agent to work under these conditions. The first was a re-
liable messaging system, using an ALOHA-like retransmission scheme.
When a message is being composed, the source can mark it with a flag
indicating it should be sent reliably, while other messages are assumed
to be unreliable. Before transfer, the communication component adds a
sequence number to such messages. Upon receipt of a sequenced mes-
sage, the destination will reply with an ack, so that the source can track
which messages have been successfully delivered. If no acknowledgment
is received, the component waits a random amount of time, typically
around 1500 ms, before resending the message.

While this solved the reliable messaging problem, the potential for re-
transmissions exacerbated the aggregate bandwidth limitation. In par-
ticular, spikes in an agent’s communication level could result in a cascade
of failures as retransmissions collide with new data. To help with both
this and the bandwidth restrictions in a more general sense, a byte-level
rate limiter was added, which enforces a limit on the maximum number
of bytes an agent could transmit per interval. Any attempted transmis-
sions past this cap are postponed until the next interval. The level used
in practice was empirically selected, typically around 1000 bytes/second,
but could also be learned.

With the addition of the rate limiter, it then became an issue of out-
going message queues potentially growing without limit. To overcome
this, the communication component provides a communication load es-
timate, which can be used by other components to restrict unnecessary
communication. The SPAM protocol, for instance, uses this to decide
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how aggressively it is willing to search for a solution. In addition, a
lightweight prioritization scheme was added which affected which mes-
sages from the queue would be selected for delivery. It would also proac-
tively drop unreliable messages if they were too old. Although some are
relatively domain-specific, the mechanisms used work fairly well, and
we feel these sorts of techniques could be generalized for use in other
bandwidth-challenged environments.

3.1.2 Directory Services. Another component worth cover-
ing in more detail is the directory service component, which provides an
agent with the ability to store arbitrary textual information from many
sources and process queries over that data. Individual entries consist of
one or more named fields, each of which will contain data. The directory
also possesses a set of one or more descriptions, which specify the type of
entries they are willing to accept. As a directory receives an entry to be
added, it checks it against each of its descriptions, and if any match, the
entry is added. Queries may be made to local or remote directories. The
syntax for both entry descriptions and queries is the same, consisting of
a series of boolean, arithmetic or string expressions. The functionality
of the directory itself is generic, and thus can serve as the supporting
structure for a number of different directory paradigms, such as yellow
pages, blackboards or brokers [Sycara et al., 1997].

In our system, directory services are used primarily in a yellow pages
capacity, to centralize and disseminate information, thereby limiting the
amount of communication needed to gather information. Individual
agents post their capabilities to their sector manager’s directory, which
allows other agents (particularly track managers) to easily search for
agents that can sense within that sector. This type of query is used to
both construct the scanning schedule, and determine which agents are
capable of sensing a target at a particular location. Each agent in the
environment also has its own, smaller directory service, where it locally
stores descriptions of sector managers, providing an easy mechanism to
find the managers of their own and neighboring sectors.

As an example, a typical sector manager might have several directory
entries for sensors capable of scanning in its sector. One such entry
would take the following form:

[E SA1 [Name->SA1] [Task->Scan] [R->20]
[x->10] [Y->10] [0->60] [C—>1]]

This contains information such as the sensor’s name, task, sensing
radius, x and y position, orientation and communication channel. Later,
when, for instance, a track manager needs to determine which nodes can
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be used to track a target in a given region, it might generate the following
query:
(CCC((20 + R) >= X) & ((10 - R) <= X)) &
((10 + R) >= 1)) & ((0 - R) <= Y)) & (Task == "Scan"))

This query matches entries whose x,y locations fall within a given area,
offset by the sensor’s radius. In this case, it will return all sensors which
are capable of scanning within the area (10,0),(20,10). If the region in
question spanned multiple sectors, the track manager would assimilate
the results from several queries to different sector managers.

The directory service provided by the sector manager is also used to
create some measure of fault tolerance in the system. When a track man-
ager submits a query like the one described above, the directory service
remembers this event, and stores the query. If the contents of the direc-
tory are updated in such a way that the response to that query changes,
it automatically forwards the new information to the agent which orig-
inally produced the query. Therefore, as the sector manager recognizes
changes in the agent population, that information is automatically prop-
agated to the affected agents. For example, if a sensor goes offline for
some reason (diagnosing such a fault is a challenge we do not address
here), that information will be reflected in the directory, which will then
be sent to all relevant track managers. Once it has that information, the
track manager can adapt to or compensate for that change as necessary.

3.2 Soft Real-Time Control

The Soft Real-Time Control Architecture (SRTA), the agent control
engine used by this solution, provides several key features to the ANTs
solution:

1 The ability to quickly generate plans and schedules for goals that
are appropriate for the available resources and applicable con-
straints, such as deadlines and earliest start times.

2 The ability to merge new goals with existing ones, and multiplex
their solution schedules.

3 The ability to efficiently handle deviations in expected plan be-
havior that arise out of variations in resource usage patterns and
unexpected action characteristics.

The system is implemented as a set of interacting components and
representations, as shown in Figure 1.5. A domain independent task
description language is used to describe goals and their potential means
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Figure 1.5. The soft real-time control architecture.

of completion, which includes a quantitative characterization of the be-
havior of alternatives. A planning engine can determine the most ap-
propriate means of satisfying such a goal within the set of known con-
straints and commitments. This permits the system to be able to adjust
which goals it will achieve, and how well it will achieve these chosen
goals based on the dynamics of the current situation. Scheduling ser-
vices integrate these actions and their resource requirements with those
of other goals being concurrently pursued, while a concurrent execution
module performs the actions as needed. Exception handling and conflict
resolution services help repair and route information when unexpected
events take place. Together, this system can assume responsibility for
the majority of the goal-satisfaction process, which allows the high-level
reasoning system to focus on goal selection, determining goal objectives
and other potentially domain-dependent issues. For example, agents
may elect to negotiate over an abstraction of their activities or resource
allocations, and only locally translate those activities into a more pre-
cise form [Mailler et al., 2001]. SRTA can then use this description to
both enforce the semantics of the commitments which were generated,
and automatically attempt to resolve conflicts that were not addressed
through negotiation.

SRTA is exploited in the agent to create a virtual agent organization
of simple, single-purpose agents which are mapped onto the real agent
population. For example, recall the track manager described earlier and
shown in figure 1.2. While this role could be assigned to an agent who
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had no other responsibilities, we instead allow these roles to coexist
with others, which are addressed in parallel by a single, sophisticated
agent which uses SRTA to work on multiple goals simultaneously. The
manager and sensor control roles described previously are in fact “vir-
tual” agents, which are implemented as goals that are created as needed
and dynamically assigned to a specific sophisticated “real” agent. The
“real” agents in this case are the processes residing at and controlling
the sensors in figure 1.2. The scanning activities described in the previ-
ous section are also created this way, when the sector manager provides
an agent with details from the scan schedule, as are the tracking tasks
described in the next section. With this information, the “real” agent
then performs detailed planning/scheduling for all of its goals based on
local resource availability and goal priority, and multiplexes among the
different concurrently executing tasks in order to meet soft real-time
requirements.

SRTA operates as a functional unit within a JAF-based agent, which
itself runs on a conventional (i.e. not real-time) operating system. More
generally, the SRTA controller is designed to be used as part of a layered
architecture, occupying a position below the high-level reasoning compo-
nent in an agent [Zhang et al., 2000, Bordini et al., 2002]. In this role, it
will accept new goals, report the results of the activities used to satisfy
those goals, and also serve as a knowledge source about the potential
ability to schedule future activities by answering what-if style queries.
Within this context, SRTA offers a range of features designed to provide
support for operating in a distributed, intelligent environment. The goal
description language supports quantitative, probabilistic models of ac-
tivities, including non-local effects of actions and resources and a variety
of ways to define how tasks decompose into subtasks. In particular, the
uncertainty associated with activities can be directly modeled through
the use of quantitative distributions describing the different outcomes a
given action may produce. Commitments and constraints can be used
to define relationships and interactions formed with other agents, as well
as internally generated limits and deadlines. The planning process uses
this information to generate a number of different plans, each with dif-
ferent performance characteristics, and ranked by their predicted utility.
A plan is then used to produce a schedule of activities, which is com-
bined with existing schedules to form a potentially parallel sequence of
activities, which are partially ordered based on their interactions with
both resources and one another. This sequence is used to perform the
actions in time, using the identified preconditions to verify if actions can
be performed, and invoking light-weight rescheduling if necessary. Fi-
nally, if conflicts arise, SRTA can use an extendable series of resolution
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techniques to correct the situation, in addition to passing the problem
to higher level components which may be able to make a more informed
decision.

3.3 TAEMS

ds [ Set-Time-Synch ||

] [Cale-Bkgrd

Figure 1.6. An abbreviated view of the sensor initialization T/AEMS task structure.

TAEMS , the Task Analysis, Environmental Modeling and Simula-
tion language, is used to quantitatively describe the alternative ways
a goal can be achieved [Decker and Lesser, 1993, Horling et al., 1999].
A TEMS task structure is essentially an annotated task decomposition
tree. The highest level nodes in the tree, called task groups, repre-
sent goals that an agent may try to achieve. For example, the goal
of the structure shown in figure 1.6 is Setup-Hardware. Below a task
group there will be a set of tasks and methods which describe how that
task group may be performed, including sequencing information over
subtasks, data flow relationships and mandatory versus optional tasks.
Tasks represent sub-goals, which can be further decomposed in the same
manner. Setup-Hardware, for instance, can be performed by complet-
ing Startup, Init, and Obtain-Background-Noise. Methods, on the
other hand, are terminal, and represent the primitive actions an agent
can perform. Methods are quantitatively described, in terms of their ex-
pected quality, cost and duration. Activate-Sector_0, then, would be
described with its expected duration and quality, allowing the schedul-
ing and planning processes to reason about the effects of selecting this
method for execution. The quality accumulation functions (QAF) below
a task describes how the quality of its subtasks is combined to calculate
the task’s quality. For example, the g min QAF below Init specifies
that the quality of Init will be the minimum quality of its subtasks -
so all the subtasks must be successfully performed for the Init task to
succeed. Interactions between methods, tasks, and affected resources are
also quantitatively described. The curved lines in figure 1.6 represent
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resource interactions, describing, for instance, the produces and con-
sumes effects method Set-Sample-Size has on the resource SensLock,
and how the level of SensLock can limit the performance of the method.

TAEMS structures are used by our agents to describe how particular
goals may be achieved. Rather than hard coding, for instance, the task
of initializing the sensor, we encode the various steps in a TAEMS struc-
ture similar to that shown in figure 1.6. This simplifies the process of
evaluating the alternative pathways by allowing the designer to work at
a higher level of abstraction, rather than be distracted by how it can
be implemented in code. More importantly, it also provides a complete,
quantitative view that can be reasoned about by planning, scheduling
and execution processes. A given task structure begins its existence
when it is created, read in from a library, or dynamically instantiated
from a template at runtime. Planning elements are involved both in
the generation of the structure, and then in the selection of the most
appropriate sequence of methods from that structure which should be
performed to achieve the goal. This sequence is then used by a schedul-
ing process to determine the correct order of execution, with respect
to such things as precedence constraints and resource usage. Finally,
this schedule will be used by an execution process to perform the spec-
ified actions, the results of which are written back to the original task
structure.

The schedules produced by individual TAMS structures are the build-
ing blocks for an agent’s overall schedule of execution. A valid sched-
ule completely describing an agent’s activities will allow it to correctly
reason about and act upon the deadlines and constraints that it will en-
counter. Typically, however, schedules are only used to describe lower-
level activity - in this domain, this encompasses sensor initialization,
scanning and tracking activity, data fusion and the like. An important
class of actions, so called meta-level activity, is missing from this list.
Meta-level activities are the high-level functions which enable the lower-
level activities. These include such things as scheduling, negotiation,
communication, problem solving and planning. Without accounting for
the time and computational resources these actions take, the schedule
will be incomplete and susceptible to failure. In this study, we have
begun accounting for these activities by including negotiation and coor-
dination activities in our TAEMS task structures. From a scheduling and
execution perspective, a negotiation sequence is just like any other action
- it will have some expected duration and cost, a probability of success,
and some level of required computational resources. By modeling nego-
tiation sessions as a task structure, we are able to cleanly account for
and schedule the time required to perform them, thus improving the
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accuracy of our schedules. In the future we will explore additional mod-
eling of other meta-level activities, including planning and scheduling.
We currently handle the time for these activities implicitly by adding
slack time to each schedule. This is accomplished by reasoning with the
maximum expected duration time for a given schedule, rather than the
average time [Raja and Lesser, 2002].

3.3.1 Scheduling. In the SRTA architecture, we have at-
tempted to make the scheduling and planning process incremental and
compartmentalized. New goals can be added piecemeal to the execution
schedule, without the need to re-plan all the agent’s activities, and ex-
ceptions can be typically be handled through changes to only a small
subset of the schedule. Figure 1.5 shows the organization of SRTA.
In this architecture, goals can arrive at any time, in response to envi-
ronmental change, local planning, or because of requests from another
agents. The goal is used by the problem solving component to generate
a TAEMS task structure, which quantitatively describes the alternative
ways that goal may be achieved. The TAMS structure can be gener-
ated in a variety of ways; in our case we use a TAEMS “template” library,
which we use to dynamically instantiate and characterize structures to
meet current conditions. Other options include generating the structure
directly in code [Lesser et al., 2000], or making use of an approximate
base structure and then employing learning techniques to refine it over
time [Jensen et al., 1999].

SRTA uses the Design-To-Criteria component [Wagner et al., 1998] to
generate linear plans solving the goal described in the TAMS structure.
It employs a battery of techniques to efficiently discover and reason about
the various activity schedules which can address that goal. The ability
to make trade-offs while respecting commitments is particularly impor-
tant, as DTC attempts to select the quantitatively “best” plan which
meets the specified requirements. DTC uses criteria such as potential
deadlines, minimum quality, external commitments, and soft and hard
action interrelationships to select an appropriate sequence of activities.

The resulting plan is used to build a partially ordered schedule, which
uses structural details of the TAMS structure to determine precedence
constraints and search for actions which can be performed in parallel.
Several components are used during this final scheduling phase. A re-
source modeling component is used to ensure that resource constraints
are respected. A conflict resolution module reasons about mutually-
exclusive tasks and commitments, determining the best way to handle
conflicts. Finally, a schedule merging module allows the partial order
scheduler to incorporate the actions derived from the new goal with ex-
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isting schedules. Failures in this process are reported to the problem
solver, which is expected to handle them. Repairs can be accomplished
in a variety of ways, for instance, by relaxing constraints such as the goal
completion criteria or delaying its deadline, completing a substitute goal
with different characteristics, or decommiting from a lower priority goal
or the goal causing the failure.

Our notion of “parallel” in this architecture includes activities which
run concurrently in parallel, as in a multiple processor environment,
and those which run virtually in parallel, as in a time-slicing, multi-
processing operating system. If we view the sensor as a specialized,
separate processor, our task structures contain both types of methods.
For instance, a sensor measurement action can take place concurrently
with actions on the primary processor. Unifying these notions simpli-
fies the scheduling process, and can be represented appropriately using
TAEMS

Once the schedule has been created, an execution module is responsi-
ble for initiating the various actions in the schedule. It also keeps track
of execution performance and the state of actions’ preconditions, poten-
tially re-invoking the partial order scheduler when failed expectations
require it. Using the ordering constraints described in the schedule,
the execution component can directly determine which methods can be
run concurrently. By overlapping their execution, we reduce the total
execution time, which effectively increases the agents overall work ca-
pacity. The gain in execution time, and resulting flexibility, is used to
address resource availability, in addition to improving the likelihood the
scheduler can accommodate real-time changes without breaking dead-
line constraints. The primary advantage of the partial order scheduler
is its ability to quickly shift methods’ execution order at any point in
time instead of performing costly re-planning [Vincent et al., 2001]. In a
real-time environment, schedule adjustments are more frequent; by not
imposing unnecessary ordering constraints on our agent’s schedule the
agent has a better chance of achieving the time, cost and quality criteria
of its goal. We also attempt to reduce scheduling overhead by caching
and reusing plans from similar task structures.

3.3.2 Periodic Tasks. In addition to the general purpose
scheduling outlined above, the agents also incorporate a more special-
ized periodic scheduling mechanism. In order to reduce communication,
commitments between agents can be expressed as tasks which are to
be performed periodically and indefinitely until notified otherwise. To
reduce computation, these periodic tasks are arranged and scheduled
according to a slot-based scheme, where a given task will be assigned
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to run in one or more slots in a repeating cycle. For example, in this
architecture a cycle consists of three slots, each of which has a length of
one second, for a total cycle time of three seconds. Then, elements of a
commitment might specify that a scan or track measurement should be
performed indefinitely on sensor head 1 in slot 2. A subsequent message
would indicate when to stop performing the task. Using this technique,
a pair of messages can cause a large amount of data to be gathered,
and the required local scheduling overhead is reduced by abstracting the
continuous timeline into discrete independent portions.

Like any scheduling process, conflicts can arise when two tasks are to
be performed in the same slot. Different resolution techniques are used to
cope with this situation. Individual tasks have priorities associated with
them - for example, tracking tasks are more important than scanning
tasks, and as mentioned previously, some tracking tasks may be more
important than others. These priorities can be used to give preference
to certain tasks. If a task is preempted, it may either be suspended for
the lifetime of the higher priority task, or shifted to a free time slot if
one is available. Alternately, if two tasks have the same priority, the
scheduler will attempt to divide the slot between them, so that the first
will run during one cycle, the second during the subsequent cycle, then
the first, and so on. A third technique, not used in this domain, could
also attempt to perform both tasks in the same slot if sufficient time, or
a shorter duration alternative, exists to do so.

The slot-based notion of time is tightly connected with the resource
allocation protocol, and will be covered in more detail in section 1.4.2.

4. Resource Allocation
4.1 Problem Solver

The problem solver is one of only a few of the components in the agent
that is strictly domain specific. Its principle purpose is to coordinate and
direct the activities of the agent as a whole, by initiating and providing
input to other agent components. More specifically, the problem solver
is responsible for ensuring the agent performs its duties within the orga-
nization, by reasoning about the environment and goals at hand. This
includes managing the local sensor resource, managing the tracking of
one or more targets (if assigned as a track manager), and handling the
details of managing the sector (if acting as a sector manager). To accom-
plish each of these roles, the problem solver is composed of a Finite State
Machine (FSM) controller, called the Pulse Action Controller (PAC), a
set of FSMs, called pulse action machines (PAM), and a set of simple
message handlers.
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The Pulse Action Controller (PAC) is the heart of the problem solver.
It is a pseudo-generic control component that manages the division of
execution time to each of the concurrently executing roles of the agent.
The name Pulse Action is derived from the execution cycle in JAF which
“pulses” the problem solver at a somewhat fixed interval by passing
control to it. When this happens, the PAC passes execution control
to the individual PAMs that are currently registered within the agent.
This not only allows for the division of execution time, but provides
the basis for how our agents dynamically add and remove organizational
roles. In addition to dividing execution time, the PAC provides PAM
specific message routing. This feature allow messages to be specifically
addressed to a role that the agent is handling. For example, when an
agent is managing two tracks concurrently, the sensors can address the
results of measurements they are taking to one of the two roles, avoiding
the need to disambiguate the information. Lastly, the PAC provides a
priority based shared locking mechanism. This feature allows a PAM to
“lock” on specific keywords, which then cannot be locked on by a lower
priority lock requests. This mechanism is most frequently used to signal
that a critical section of processing on shared state has been entered and
changes to that state should be avoided unless absolutely necessary.

A PAM is defined as PAM = (A,C,6,a9,F) where A is a set of ac-
tions, C' is the set of input conditions, § : A x C' — A is the transition
function, ag € A is an initial action, and F C A is the set of final ac-
tions. Actions are not just a representation of state, but actual executing
code that performs an action or set of actions before completing. Each
of the PAMs in our system has been constructed by extending a basic
or abstract PAM. The abstract PAM provides message and lock queue
maintenance, action and transition monitoring, as well as PAM specific
attribute/state storage. There are currently five possible transition con-
ditions specified in the abstract PAM, which may be combined with each
other using an implicit “or”. They are time (transition to a new state
once a specific time has been reached), messages (transition once the
message queue has a particular number of messages), directory search
(transition once the directory search has been completed), negotiation
(wait until the negotiation has completed), and locks (wait until all of
the locks have been obtained from the PAC). Negotiation is actually just
a special form of lock, which is distinguished for better clarity. Figure
1.7 is an example of a PAM within our system. Here, A is represented
by the two blocks, C is a target detect message, ¢ is represented by the
arrows, etc.

The problem solver is also composed of a separate set of message
handlers, which deal with most of the communication not addressed by
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a PAM. Based on the incoming message type, these message handlers
perform a number of actions, which range from simply updating the
agent’s internal state, to spawning a new role for the agent.

4.1.1 Sensor Agent. The simplest role for an agent to handle,
from the problem solver’s perspective, is that of sensor agent. As a sen-
sor, the agent is responsible for performing scan and tracking tasks that
are assigned to it by the sector manager or a track manager, and for re-
turning the results of those measurements to the agent that assigned the
task. For the most part, these tasks are all performed through the use of
the SRTA module described in section 1.3.2. The problem solver is only
required to provide two functions as a sensor agent. The first is that of
pre-filtering results from measurements being taken by the sensor heads,
removing measurements which indicate the absence of a moving target.
The second is to provide resource usage information to track managers
that are currently in its schedule. This is accomplished by piggy-backing
current schedule information onto results messages, which can then be
used by the track managers to detect resource conflicts. Piggy-backing is
a technique which is used to reduce the total number of messages being
transmitted in the system by adding information onto routine, regular
messages, at the expense of making those messages longer. For example,
sensors piggy-back their current schedules onto results messages occa-
sionally, thereby avoiding the need for a separate message.

4.1.2 Sector Manager. The sector manager plays a pivotal
role in the organization of the agents in the system. As mentioned earlier,
each sector manager is assigned a geographic area of the environment for
which it provides directory services, scan scheduling, target resolution
and role assignment. Directory services was covered in section 1.3.1.2,
and scan scheduling mentioned in section 1.2. This section covers the
last of these roles: target resolution and role assignment (see figure 1.7).

Target resolution is the process of determining if a reported positive
detection discovered during scanning is actually a new target or one
that is currently being tracked. When a sensor agent detects a target,
it sends a target detection message to the sector manager, with the ob-
served amplitude and frequency measurements, as well as the sector and
time the detection occurred. The information contained in this message
is sufficient to give the sector manager an estimated position of the po-
tentially new target. It is the job of the sector manager to determine
whether, given this vague information, the detection represents a new
target in the environment or if the target is currently assigned to a track
manager. To do this, the sector manager has to have an estimated po-
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sition of each of the targets within its sector. This is accomplished by
having the track managers occasionally report the location of their tar-
gets to their sector manager. Location reports come with a great deal of
uncertainty; track managers can estimate the position of their targets in-
correctly, reports become outdated, etc. We categorize this uncertainty
by having a bounding circle that encompasses a region that the target
is most likely to be in. As time goes on, with no further information
updates, the bounding circle grows, representing increased uncertainty.
The rate of the circle growth is in part associated with the last speed
estimate of the target, and the center of the circle moves as a function of
previous estimated target locations and headings. What should be clear
from this is that target detection is an exercise in uncertainty. Setting
the parameters for bound growth, initial detection bounds, reliance on
estimated target velocity, and the frequency of positional updates were
all done through extensive empirical testing.

Role assignment occurs whenever a detection is determined to actually
be a new target. When this happens, the sector manager must choose an
agent to take the role of the track manager. Choosing a track manager
is done using several criteria. First, the sector manager uses estimates of
the work that is being done by each of the agents. For example, the sec-
tor manager is less likely to choose itself as a track manager because it is
already playing an important, time-consuming role in the environment.
Next, agents which have previously been selected as track managers,
but are no longer tracking a target become more likely to be assigned
the new role. The reason for this is that agents that have previously
tracked have more cached local knowledge of the agents within their
sector than agents that have never tracked. Choosing an agent with this
prior knowledge saves the sector manager the associated message traffic
to update the new track manager’s internal knowledge. Lastly, the sec-
tor manager chooses based on the new track manager’s communication
channel. Because the role of track manager is communication intensive,
this acts to spread the messaging load of tracking multiple targets as
evenly as possible across the available channels.

4.1.3 Track Manager. Because the system’s resource allo-
cation task depends on having good predictive data the role of track
manager is a critical part of the architecture, and like other problem
solver activities is performed using a PAM (see figure 1.8). The tracking
behavior implemented in this system is a multi-part closed loop process.
Positional estimates are created by fusing measurements from three or
more sensors. These estimates are then used to model the target’s be-
havior, which in turn is used to select the most appropriate sensors to
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Figure 1.7. The target detection pulse action is used to determine if a new track
manager should be assigned and to whom the new role belongs.

take measurements. Ideally, if the positional estimates are accurate and
the target’s motion model is correctly created and applied, the track
manager should be able to choose the best sensors to track the target
in the future. If, on the other hand, the sensor selection is made poorly,
such as one that cannot see the target, an inaccurate position estimate
may be generated. This flawed position will likely corrupt the motion
model and may, for instance, cause the track manager to choose two
wrong sensors at some time in the future or to choose a sensor that
can accidentally see a different target. Through such a cascade of small
failures, the uncertainty in any part of the process can quickly degrade
the tracking performance to a point where the target is no longer being
tracked. A great deal of effort was spent in building, testing and modify-
ing each of the components involved in the tracking process. This section
discusses three of these components, namely the selection of resources
(sensors), the fusion of data these sensors produce, and the construction
of the motion model from that fused data.

Choosing the sensors needed to track a target is seemingly a straight
forward process: pick the best sensors given the location of the target.
Often, it is the case that actions that are simply stated and understood
by humans are the hardest to accomplish in an intelligent software sys-
tem. It turns out that this is the case for this problem as well. There
are actually a number of steps and information that need to be obtained
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Figure 1.8. The track pulse action starts and monitors the track until the target
is determined to be lost. It also spawns negotiations and handles sector transitions
when needed.

before an informed decision about which sensors are most appropriate
can be made. These include knowing what and where the sensors are in
the environment, knowing where the target is and will be, scoring the
sensors to find the best among the available, and ensuring that the sen-
sors are actually available to be used. The last of these will be covered
in the next section.

As can be seen from figure 1.8, the first time a target is assigned
to an agent, the track manager requests information from the sector
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Figure 1.9. A sector transition in progress. The figure on the left shows the area of
influence before it intersects the top-left sector. After this happens, the right figure
shows that sector and its sensors based on newly acquired directory information.

manager in the form of a directory service query. The query, similar
to the one described in section 1.3.1.2, returns all the sensors available
in that sector. This query serves two purposes. First, it provides the
information needed to do sensor selection for the current target. Second,
it updates the local directory services cache, which both makes that
data available indefinitely and allows the agent to avoid future queries
to the sector manager. As was mentioned earlier, once an agent obtains
this sensor information locally, it becomes a more likely candidate for
tracking future targets within the sector.

Obtaining information about the originating sector of a target is only
part of knowing what sensors are available. As the target moves through
the environment, it enters and exits other sectors. Two mechanisms exist
to deal with this. The first is simply an area of influence (AOI) circle
around the target, as shown in figure 1.9. This bounding circle, which
is similar to, but much larger than the uncertainty bounding circle, is
used by the track manager to signal that the target may be moving into
a new sector or has moved far enough outside of an old sector to stop
considering the target as being part of that sector. When the AOI of a
target enters a new sector, the track manager registers its target with
the sector manager of that sector. If the track manager does not already
have the information, it may also query the sector manager to update
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its local listing of sensors available in that area. The second method
involves actually moving the responsibility for the track to a new track
manager closer to the target. This technique, which we call migrating,
was incorporated because the communications range is both limited and
theoretically degrades over distance. So, when a target and the sensors
needed to track it are far enough away from the track manager, the track
manager contacts the remote sector manager and hands off the tracking
responsibility.

Once the track manager knows of the available sensors, it will select a
subset with which it will coordinate to take measurements (this process
is covered in detail in the following section). Each of these sensors will
then take measurements and return them to the track manager, which
must fuse the data in order to produce a track. Much of the complexity
involved in this process is handled by a dedicated tracking component,
which is covered elsewhere in this book. However, a few details are per-
tinent at the agent level. For instance, particular measurements may
be excessively noisy - a characteristic which can be determined by the
originating agent. A simple heuristic is to not send such measurements,
which reduces load on both the communication medium and data fu-
sion agent. Another particularly difficult problem faced by the sensor
network is associating measurements with their correct targets. In a
multi-target environment, the potential exists for an agent to unknow-
ingly fuse measurements from one target into the track of another, which
will adversely affect that track’s quality. Our solution attempts to detect
this situation by using the sector managers to distribute known targets’
locations to track managers if their respective targets are close to one
another. When a track manager receives a measurement, it can use that
information to determine the probability that it is ambiguous, and may
not correspond to the target it is responsible for. That information can
be used to determine if the measurement should be discarded.

The next component of the sensor selection process is knowing where
the target is or will be. While tracking the target’s current location is im-
portant, actually obtaining that information relies upon measurements
from the appropriate sensors, which requires an accurate prediction of
the future location of the target so those sensors may be allocated. This
prediction is necessary because of the latency introduced by communi-
cations. From the time a measurement is taken to the time it is used
in determining a target’s position, some delay occurs. So the “current
location” of a target known by the tracking agent is actually its loca-
tion some moments beforehand, and the delay imposed by selecting and
committing with sensors means the tracking agent actually needs the
location of the target at some point in the future.
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Motion modeling is accomplished by obtaining a small sampling of
recent location estimates from the track and performing a linear regres-
sion on them. There are actually two regressions happening: change in
X position over time and change in Y position over time. This simple
regression assumes that the X and Y relative velocities are independent
of one another. Small sample sizes are used to allow the system to be
more reactive to changes in both the speed and direction of the target.
This, of course, causes the predictive model to be subject to large small-
sample statistical errors. Some of these affects are compensated for by
a second model of target speed maintained by the agent, which is used
to appropriately scale the regressions in cases where the independence
assumption and sampling error causes the speed of the target to be ex-
cessive. This has the overall effect of smoothing the speed while not
effecting the rate of direction changes.

Even with these and other techniques, noisy data, lost communication,
or incorrect interpretation can still cause the target to be lost. We
have incorporated two ways of dealing with targets that are becoming
untrackable. First, we use a fail-safe area intersection technique. The
area intersection model takes measurements which are above the noise
threshold, interprets them as graphical regions, and then computes the
intersection of those regions. This provides a rough estimate of where
the target is at any given moment, and can allow the track manager
to refocus its attention in the right direction. This area intersection
model is used as an override technique to the linear regressions. The
other technique is simply to report that the target is lost. Although not
an optimal technique, this method frees up potentially wasted resources
and allows the sensors to scan their areas to potentially rediscover the
missing target.

Ultimately, the target’s location estimate is simply that - an estimate.
To represent this fact, target locations are always reasoned about as a
bounding circle, centered around the maximum likelihood predictor of
the linear regression motion model. The radius of the circle is associated
with the relative velocity of the target. The degree of association or, put
another way, our belief in the predictive capabilities of the motion model
is a tunable parameter. In addition, the size of the circle has a lower
bound to model the inherent uncertainty introduced by the noise of the
sensors and the triangulation process, even if the supporting data are
seemingly accurate. This parameter is also tunable.

Finally, the last part of selecting the sensors is scoring or ranking
their appropriateness for tracking the target. Given the target bound,
the sensor locations and orientation, the scoring function calculates the
average expected amplitude of taking a measurement from a particu-
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Figure 1.10. The three levels of abstraction used to negotiate when tracking a target.
The top level shows track manager T1’s sensor level abstraction wanting to use sensors
S1, S2, S3, and S4. All conflicts could not be resolved at a higher level, so sensors
S2 and S4 are left to resolve the conflict between T1 and T2 at the next lower level.
Sensor S4 chooses to resolve its conflict at the resource level by squeezing in two track
tasks from T1 followed by two from T2.

lar sensor/platform combination. The expected amplitude is calculated
using a model of the sensor’s performance that takes into account the
distance and relative angle of the target from the sensor head. Expected
amplitude is appropriate because higher signal to noise ratios provide
greater ability to distinguish between small variations in distance or an-
gle which means less uncertainty in the the final location estimate. In
the end, the score results in a ranking of the sensors relative to one an-
other?. The next section discusses the final part of the tracking problem,
namely, how to ensure enough measurements are taken for each target
when conflicts for the same sensors exists.

4.2 SPAM

4.2.1 Abstraction. Our approach to solving the allocation
problem created by this environment involves viewing the problem at
different levels of abstraction (see figure 1.10) depending on the amount
of available time. The highest level, the sensor level, is maintained by
the individual track managers and strictly focuses on which sensors are
needed and desired to track the target. Solutions created at this level
ignore the details of the individual sensors’ schedules in making choices of
how to allocate resources and simply choose based on the track managers
internal requirements.

Below the sensor level is the schedule abstraction level. Here, tasks
are viewed as periodic and resource scheduling is done at a coarse, slot-

2Certainly, more advanced methods of describing the uncertainty of a target’s location and
the subsequent selection of sensors could be used. A change of this nature does not affect
the overall architecture in a significant way.
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Figure 1.11. Utility of taking a single measurement from 7, sensors.

based granularity. Within the sensor platforms, agents maintain this
abstraction level by using the Periodic Task Controller (PTC), which
provides SRTA with tasks at times that are appropriate to the schedule.
The PTC is capable of autonomously resolving conflict by using one
of several techniques, including shifting slot boundaries, selecting tasks
to execute based on importance level, or temporarily shifting a task to
empty slots in its schedule. It also implicitly uses the alternative solution
generation capabilities provided by the Design-to-criteria planner used
by SRTA. This allows the PTC to handle some level of resource conflict,
which we call slot co-binding, that may be left unresolved by high level
negotiation.

At the lowest level, the resource level, all of the minute details of task
execution and resource usage within the sensors are scheduled using
SRTA. If scheduling conflicts reach this level of abstraction, the partial
order scheduler (POS) can shift the task execution to try to eliminate
any remaining conflict. Conflicts at this level can be created when the
sensor is working on meta-level tasks that are not explicitly reasoned
about at the schedule abstraction level.

4.2.2 Utility. To clarify what our protocol is attempting to
achieve it helps to see how utility is measured in the tracking domain. As
mentioned previously, tracking involves coordinating measurements from
three or more sensors which are then fused together to form an estimated
position of the target. Increasing the number of sensors improves the
quality of the estimate by the function given in figure 1.11. Increasing
the measurements taken in a given period of time yields a linear increase
in the overall quality of the track.

If we say that T, is the number of sensors that took measurements
leading to the positional estimate and T is the number of times they
are taken in a given period of the abstract periodic schedule, then we
can quantify this relationship by the following formula:

Util(Track) = Util(T,) x T
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In fact, track managers within the system use this measurement as the
basis for deciding what objective utility level to try to achieve for track-
ing a specific target. We will often denote the objective level as D, x D,
denoting the number of agents desired for the number of slots in the
schedule abstraction level. For example, a track manager may wish to
have three agents for two slots of the schedule abstraction level denoted
3 x 2. For this domain, we set the number of slots in the schedule ab-
straction level to match the number of sensor heads on each platform,
which is three.

Looking at this utility function it should be noted that co-binding can
have a profound effect on the quality of a track. In fact, because the
sensors make the decision about which track to satisfy on each period
of their periodic schedule, having more than one sensor co-bound for
a particular slot causes a near random occurrence of synchronization.
This relationship can be seen in the following formula. Here S is the
set of slots in the abstract schedule level and 7}’ is the number of actual
measurements that are taken during a given slot s .

o
Util(Track) = > > Prob(T} = a)Util(T})
s€Sa=3
Note that if the utility of a particular track is 0 by the above formula,
we actually penalize ourselves for not tracking the target by returning
a value of -1 instead. In addition, the lower bound on the number of
sensors needed to track is three. As the formula specifies, tracking with
0, 1 or 2 sensors does not add to the utility of the track3.
Finally, the global utility can be calculated by summing the utilities
for the individual tracks (one track per target).

4.2.3 Protocol. To meet the objectives of the environment
and to incorporate the techniques that were discussed in the previous
sections, the Scalable Protocol for Anytime Multi-level (SPAM) negoti-
ation is divided into three stages. As the protocol transitions from stage
to stage, the agent acting as the track manager gains more context infor-
mation and therefore is able to improve the quality of its overall decision.
After each stage or at any time during stage 2, the track manager can
choose to stop the protocol and is ensured to have a solution - albeit
not necessarily a good one (not necessarily conflict free). Figure 1.12
shows the amount of information that the track manager has at each
stage of the protocol. The figure shows that as the amount of informa-
tion obtained increases, the track manager is able to shift its negotiation

3This isn’t strictly the case using the Bayesian tracking module provided by USC.
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Figure 1.12. The three stages of SPAM showing the information that is available
and the level of abstraction the track manager uses in generating possible solutions.

| 1
Track Manager T1 : Track Manager T2 1 Track Manager T3
S1,S2,S3,S4 e S3,54,S5,S6 | S555,S7,S8
Objective: 4X3 | Objective: 4X3 } Objective: 4X3

Figure 1.13. Example of a common contention for resources. Track manager T2 has
just been assigned a target and contention is created for sensors S3, S4, S5 and S6.

abstraction level. This means that if the track manager chooses to termi-
nate the protocol before stage 1, it acts at the sensor level of abstraction
(deciding on only which sensors it desires) and leaves the decision of how
to handle the actual scheduling to the sensor agents themselves as was
discussed in the previous sections.

4.2.4 Stage 0 & 1. The best way to explain the operation of
the protocol is through an example. Consider figure 1.13, which depicts
a commonly encountered form of contention. Here, track manager T2
has just been assigned a target. The target is located between two
existing targets that are being tracked by track managers T1 and T3
and there are no other targets in the environment. T1 and T3 have
already bound every one of the slots in each of their desired sensors.
This creates contention for sensors S3, S4, S5, and S6.

The protocol is started whenever the track manager (T2) is assigned
the new target and begins stage 0. Stage 0 is primarily responsible
for viewing the problem at the sensor level. Because of this, each of
the sensors that have the potential to track the target are evaluated
and ordered using domain specific measures. In this stage, the track
manager also assigns an initial objective level to the track. Objective
levels in general are derived from the track manager’s objective function.
This function, which may be different for every track manager, defines
the order of the objective levels, the initial objective level for a track, and
a lower bound of the objective level before giving up on an unconflicted
solution. In our example, T2 prunes the list of available sensors down
to just 4 that are able see the target, namely S3, S4, S5, S6, and sets its
initial objective level to the highest possible level, desiring all 4 sensors
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Figure 1.14. Stage 2 of the SPAM negotiation protocol resolves all local conflict at
the schedule abstraction level through negotiation with conflicting track managers

for each of the 3 potentially available slots. The manager perceives itself
to have more time so it goes onto stage 1.

Stage 1 of the SPAM protocol begins by obtaining abstract schedule
information from the PTC in each of the sensor agents. This information
is used in two ways. First, if a solution at the current objective level can
be obtained, the track manager can bind the solution and avoid a more
costly track manager-to-track manager negotiation. Second, if a solution
cannot be found at the current objective level, the track manager has
enough information to bind a solution that minimizes the unresolved
conflict given the current objective level. Like stage 0, the negotiation
session can be terminated at the end of stage 1 if insufficient time is
available to continue. Track manager T2, following the protocol, obtains
the current schedule information for each of the sensors it desires. In
this example, it is unable to find a conflict free solution, binds at its
current objective level, causing a great deal of conflict in the sensors and
therefore it proceeds to stage 2. This binding, though not conflict free,
will allow tracking to begin for T2 at some degraded level, depending on
the local sensor agent’s ability to resolve the conflict.

4.2.5 Stage 2. Stage 2 is the heart of the protocol (see fig-
ure 1.14). This stage attempts to resolve all local conflict that a track
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manager has by elevating the negotiation to the track managers that
are in direct conflict over the desired resources. To do this, the origi-
nating track manager takes the role of the negotiation mediator for the
local conflict (multiple negotiations can occur in parallel in the environ-
ment). As the mediator, it becomes responsible for gathering all of the
information needed to generate alternative solutions, generating possible
solutions which may involve changes to the objective levels of the man-
agers involved, and finally choosing a solution to apply to the problem.
Because the solutions are generated without full global information, how-
ever, the final solution may lead to newly introduced non-local conflict.
If this occurs, each of the track managers can choose to propagate the
negotiation by becoming the mediator of a new negotiation to resolve
the newly introduced conflict if they have the time. So, what started
out as a new target or resource requirement, may lead to the negotiation
propagating across the problem landscape.

Viewing the behavior of SPAM stage 2 from the global perspective,
where there may be long chains of interacting subproblems, SPAM works
by solving local resource conflicts while attempting to prevent the con-
flicts from spreading through the chain. This behavior is similar to the
work of [Minton et al., 1992], who randomly chose a queen and used
a min-conflict heuristic to solve the n-queen problem. The chief dif-
ference between that work and this is that the mediator, with only a
limited view, has no way to measure the overall effect of attempting to
minimize its own conflict.

Continuing the example in figure 1.13 and following the protocol, track
manager T2, as the originator of the conflict, takes on the role of nego-
tiation mediator. After the mediator concludes the oscillation detection
phase (explained later in this section), it begins the solution generation
phase by requesting abstract information from all of the track managers
that are involved in the resource conflict. This information includes the
manager’s current objective level, the number of sensors that can see
the target, the names of the sensors that are in direct conflict with the
mediator, and the number of external conflicts (i.e. conflicts on the sen-
sors not being mediated over) that the manager has. To continue our
example, T2 sends a request for information to T1 and T3. T1 and T3
both return that they have 4 sensors that can track their targets, the list
of sensors that are in direct conflict (i.e T'1(Ss,S4), T'3(S5, Ss)), their
objective level (4 x 3 for both of them), and that they have no additional
conflicts.

Using this information, T2 begins to generate solutions to the re-
source problem. Here, a solution refers to one that includes all of the
track managers (T1, T2, T3) for all of the sensors (S3, S4, S5, S6) that
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the mediator is able to directly interact with (an example can be seen
in figure 1.16). In addition, when a solution is created, it is unconflicted
over those sensors. These solutions represent complete solutions for the
mediator (T2) and potential partial solutions for the other track man-
agers (T1 and T3) since the solution does not involve sensors that are
not in conflict with T2’s desired allocation (i.e. S1 and S2 for T1, and
S7 and S8 for T3). In fact, the mediator assumes that sensors not be-
ing directly considered as part of the mediation are freely available to
be used. In other words, T2 assumes that sensors S1, S2, S7, and S8
currently only have commitments for tracks T1 and T3.

Track manager T2 enters a loop that involves attempting to gener-
ate solutions followed by lowering one of the track manager’s objective
level, if no full solutions are possible given the current objective levels
of each of the track managers. One of the principle questions that we
are currently investigating is how to choose the track manager that gets
its objective level lowered when non-conflicting solutions are unavailable.
Currently this is done by first choosing the track manager with the high-
est objective level and lowering their level. This has the overall effect
of balancing the objective levels of the track managers involved in the
negotiation. Whenever two or more managers have the same highest ob-
jective level, we choose to lower the objective level of the manager with
the least amount of external conflict. External conflict is measured by
information given to the mediator by track managers about current con-
flicts over sensors not currently being considered in the mediation. By
doing this, it is our belief, that track managers with more external con-
flict will maintain higher objective levels, which leaves them more room
to compromise in subsequent negotiations as a result of propagation of
these conflicts.

The solution generation loop is terminated under one of two condi-
tions. First, if given the current objective levels for each of the managers,
a set of full solutions is available, the negotiation enters the next phase.
Second, the objective levels of the track managers cannot be lowered
any further and no full solutions are available. Under this condition, the
negotiation session is terminated and the mediator takes a solution at
its lowest objective level, conceding that it cannot find a full solution.

Continuing our example, T2 first lowers the objective level of T1
(choosing T1 at random because they all have equal external conflict).
No full solutions are possible under the new of set objective levels, so the
loop continues. It continues, in fact, until each of the track managers
has an objective level of 3 x 2 at which time T2 is able generate a set
of 216 full solutions to the problem (an example of which can be seen in
figure 1.15).
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Figure 1.15. One of the proposed solutions derived by mediating manager T2 to the
problem in figure 1.13.

During the solution evaluation phase, the mediator sends each of the
track managers its set of partial solutions that are part of the full solu-
tions generated in the previous phase. Each track manager, using this
information and the proposed objective level, can then determine what
partial solutions, if any, are acceptable. In our example, T2 sends 24
partial solutions to T1 for sensors S3 and S4, 24 partial solutions to itself
for sensors S3, S4, S5, and S6, and 24 partial solutions to T3 for sensors
S5 and S6. In our current implementation, each of the track managers
orders its partial solutions from best to worst based on the number of
new conflicts that will be created and the number of changes that will
have to be made in order to implement the new allocation. The ordering
is then returned to the mediator. Currently, we are looking at a number
of alternative techniques for providing local preference information to
the mediator including simply returning utility values for each solution
and assigning solutions to a finite set of equivalence classes.

Once the mediator has the partial solution orderings from the track
managers, it is able choose the final solution to apply to the problem.
Using the orderings, the mediator prunes the solution set generated in
the solution generation phase by only keeping solutions that contain the
highest ranked partial solution for the track manager with the most ex-
ternal conflicts. This new reduced set of solutions is then pruned by the
mediator to contain only solutions that have the highest ranked partial
solution from the second most externally conflicted track manager. This
process continues until only one solution remains in the solution set.

In our example, T2 collects the ordering from T1, T2, and T3. Choos-
ing based on the same ordering that was used to reduce the objective
levels, T3 is given first choice. By its ordering it ranked its partial solu-
tion 0 the highest. This restricts the choice for T2 to its partial solutions
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Sot 1 Slot 2 Slot 3 Sot 1 Slot 2 Slot 3
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S8 T3 T3 T3 S8 T3 T3

Figure 1.16. A solution derived by SPAM to the problem in figure 1.13. The table
on the left is before track manager T2 negotiates with T1 and T3. The table on the
left is the result of stage 2 negotiation.

0, 1, 2, and 3 because only these partial solutions continue to provide a
solution. T2 ranked 0 ranked from this set, leaving T1 to choose between
its Oth, 1st, and 2nd partial solutions. It turns out that T1 likes its Oth
solution the best; so the final solution that is applied is composed of
T3’s partial solution 0, T2’s partial solution 0, and T1’s partial solution
0.

The last phase of the protocol is the solution implementation phase.
Here, the mediator simply informs each of the track managers of its final
choice. Each of the track managers then implements the final solution.
At this point, each of the track managers is free to propagate and mediate
a negotiation if it chooses to. Currently, track managers will propagate
if a new conflict has been created as a result of the final solution choice.
In future versions, it is our hope that utility, and not conflicts, will form
the basis for determining when to propagate. Figure 1.16 shows the
original configuration of the sensors before T2 was introduced and after
stage two completes.

As mentioned earlier, stage 2 starts in the oscillation detection phase.
Oscillation can occur because conflicts are resolved locally without re-
gard to the global context. Consider if in our previous example, track
manager T1 originated a negotiation with track manager T2. In addi-
tion, assume that T2 had previously resolved a conflict with manager
T3, that terminated with neither T2 or T3 having unresolved conflict.
Now when T1 negotiates with T2, T'1 in the end gets a locally uncon-
flicted solution, but in order for that to occur, T2 ended up in conflict
with T3. It is possible that when T2 propagates the negotiation, that
the original conflict between T1 and T2 is reintroduced, leading to an
oscillation.

To prevent this from happening, each track manager maintains a his-
tory of the sensor schedules that are being negotiated over whenever a
negotiation terminates. By doing this, managers are able determine if
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they have previously been in a state which caused them to propagate a
negotiation in the past. To stop the oscillation, the propagating manager
lowers its objective level to force itself to explore different areas of the
solution space. It should be noted that in certain cases oscillation may
be incorrectly detected using this technique which can result in having
the track manager unnecessarily lower its objective level.

4.2.6 Generating Solutions. Generating full solutions for the
domain described earlier involves taking the limited information that was
provided through communications with the conflicting track managers
and assuming that the sensors which are not in direct conflict, are freely
available. In addition, because the track manager that is generating full
solutions only knows about the sensors which are in direct conflict, it
only creates and poses solutions for those sensors. The formula below
gives the basic form for how partial solutions are generated for each track
manager. Here, A; is the number of slots that is available in the schedule
abstraction layer, D, is the number of slots that are desired based on
the objective level for the track manager, A, is the number of sensors
available to track the target (those that can see it), D, is the number of
sensors desired in the objective function, and finally C, is the number
of sensors under direct consideration because they are conflicting.

min(Caq,Da)
Solutions = ( éz ) ( Z ( C;a )

i=maz(0,Dqs—Aq+Cyq)

As can be seen by this formula, every combination of slots that meets
the objective level is created and for each of the slots, every combination
of the conflicted sensors is generated such that the track manager has
the capability of meeting its objective level using the sensors that are
available. For instance, let’s say that a track manager has four sensors
S1, S2, S3, and S4 available to it. The track manager has a current
objective level of 3 X 2 and sensors S2 and S3 are under conflict. The
generation process would create the 3 combinations of slot possibilities
and then for each possible slot, it would generate the combination of
sensors such that three sensors could be obtained. The only possible
sensor combinations in this scenario would be that the track manager
gets either S2 or S3 (assuming that the manager will take the other
two available sensors) or it gets S2 and S3 (assuming it only takes one
of the other two). Therefore, a total of 27 possible solutions would be
generated.

It is interesting to note that we use this same formula for generating
partial solutions in stage 0 and 1 of the protocol. This special case
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generation is actually done by simple setting C, = A,. The formula
above, in this case reduces to:

. A, A, \P
Solutions = ( D, ) ( D, )

Partial solutions can also be generated when there are a number of
pre-existing constraints on the usage of certain slot/sensor combinations.
Simply by calculating the number of available sensors for each of the slots
and using this as a basis for determining which slots can still be used,
we can reduce the number of possible solutions considerably.

Using the ability to impose constraints on the partial solutions gen-
erated for a given track manager allows us to generate full solutions for
the track managers in stage 2. By ordering the track managers, we can
generate partial solutions for them one at a time using the results from
higher precedence track managers as constraints for lower precedence
ones. Continuing our example from figure 1.13, say that T1 had one
external conflict and T3 had two. When the full solution set is gener-
ated, T2 generates partial solutions for manager T3 first. T2 then uses
the results from this as constraints on the creation of partial solutions
for T1. The resulting full solutions (now with solutions for T1 and T3)
are used as constraints for generating the partial solutions for T2 (which
only has local conflict because it is the mediator).

This process forms the basis of a search for full solutions to the local
conflict. You can view this as a tree based search where the top level
of the tree is the set of partial solutions for the most constrained track
manager. Each of the nodes at this level may or may not have a number
of children which are the partial solutions available to the second most
constrained track manager and so on. Only branches of the tree that
have a depth equal to the number of track managers - 1 are considered
full. If there are no branches that meet this criteria, then the problem
is considered over constrained.

In the end, we are left with a directed acyclic graph where every path
from the root nodes to the leaves has equal length (number of track
managers - 1) and represents one unique full solution. The nodes at a
particular path length represent the set of partial solutions that a track

manager has to choose from during the solution evaluation phase of stage
2.

5. Results

A distributed sensor network environment lends itself to many differ-
ent types of metrics. The most obvious is the accuracy of the tracking
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process, as determining accurate positions for the various targets is ar-
guably the point of the system. In a conventional, unified system this
would be the case; however, because the tracking component of this so-
lution was a black box developed by a third party, we instead look at the
results produced just before the tracking results are produced. Specif-
ically, we look at the number and quality of measurements that were
taken, which reflects how well both the allocation process (SPAM) and
the control architecture (SRTA) performed in practice independent of
the actual tracking output.

To perform the evaluation, we quantitatively determine the quality of
a scenario by traversing each track’s timeline and calculating a “good-
ness” metric for it. This goodness metric attempts to capture how well
that target was tracked by first partitioning the measurement data into
a number of one second slots based on the time each measurement was
taken. The analysis iterates through these slots, determines how many
measurements were taken for that track during the slot’s window of time,
and computes the slot’s score with the following function

slot; = 4/|slot;| — 2

where |slot| is the number of measurements in the slot. To compute the
track’s score, the function groups the sequence of slots into sets of three,
and determines the average score for that period.

2

period; = (Z slotsj1:)/3
=0
If the average score for a period is 0, which indicates that no measure-
ments were taken for that target during those three slots, the period
score is set to —1, which is effectively a penalty for failing to track the
target. The score for the track as a whole is computed as the average
scores of that track’s periods.

tracky = (Z period;)/|tracky|

J

where |track| is the number of periods in that track. Finally, the ag-
gregate score for the scenario as a whole is the average goodness of the
tracks in that scenario, each weighted by the length of the track:

scenario; = 1+ Z(trackk X |trackg|)/ Z |tracky|
k k

Figure 1.17 shows results using this goodness metric. This graph rep-
resents data gathered from 400 experimental runs, which compare three
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Figure 1.17. Goodness metrics for three allocation styles under various conditions.

different allocation techniques under different target densities in order
to highlight the benefits of local and negotiation-based resource alloca-
tion. The environment, shown in figure 1.18, consists of eight sensors
and from one to four targets, and each run was three minutes in du-
ration. This particular setup was selected to maximize contention with
minimal possibility of target ambiguity, creating a need for proper sensor
allocation to effectively track. In the simplest allocation process, single
commitment, each sensor can work on only one commitment at a time.
New commitments accepted by a sensor override any existing ones. In
the SRTA experiments, agents work on multiple commitments, but only
local conflict resolution strategies are employed. In this case, the peri-
odic task controller is responsible for managing conflicted commitments
as best it can. The SPAM + SRTA allocation style represents the full
solution as presented in this chapter. Commitments are generated, and
existing initial conflicts are resolved locally using SRTA. SPAM then at-
tempts to resolve these conflicts through more intelligent allocation of
the sensor resources.

As seen in the graph, when there is only one target, all three of the
methods do equally well. Of course, this is because there is no contention
for the sensors. The score of about 1.8 stems from the fact that the
target, over the course of its movement, enters regions where sensor
coverage is limited to just 2 sensors. During these periods, the period
score becomes -1, lowering the average for the track.

As the number of targets increases, the effects of contention for re-
sources becomes clear and the difference in the methods also becomes
clear. For two targets, the single commitment strategy, essentially ig-
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Figure 1.18. Radsim environment with 8 sensor nodes and 4 targets.

nores one of the targets whenever contention for the sensors occurs. The
SRTA only strategy has better performance than the single commitment
strategy because although not a conflict free solution, the local agents
are able to get coordinated measurements occasionally. Because this
happens essentially as a random event, however, this strategy results
in a relatively high standard deviation among scenarios. The SPAM +
SRTA strategy clearly does better on average and also has a very small
standard deviation. This indicates that in most instances, SPAM is able
to resolve the conflict and maintain coordination between the sensors.

As the number of targets increases above two, the performance char-
acteristics of the strategies become more distinguished. By four targets
(which is highly over constrained), the SRTA only method does no bet-
ter than single commitment. This is caused by the effects of random
coordination of measurements from the sensors causing one or more of
the targets to be ignored for most of the scenario. SPAM + SRTA also
degrades to a level where at least one of the targets is essentially ig-
nored. However, the degradation is not as serious as for the other two
techniques.



Using Autonomy, Organizational Design and Negotiation in a DSN 45

6. Conclusions

In this chapter we have described our solution to a real-time dis-
tributed tracking problem. The system works not by finding an optimal
solution, but through a satisficing search for an allocation that is “good
enough” to meet the specified resource requirements, which can then
be revised over time if needed. The agents in the environment are first
organized by partitioning them into sectors, reducing the level of poten-
tial interaction between agents. Within each sector, agents dynamically
specialize to address scanning, tracking, or other goals, which are in-
stantiated as task structures for use by the SRTA control architecture.
These elements exist to support resource allocation, which is directly
effected through the use of the SPAM negotiation protocol. The agent
problem solving component first discovers and generates commitments
for sensors to use for gathering data, then determines if conflicts exist
with that allocation, finally using arbitration and relaxation strategies to
resolve such conflicts. We have empirically tested and evaluated these
techniques in both the Radsim simulation environment and using the
hardware-based system.

Despite the fact that many of the details of our solution were designed
for the distributed sensor net problem, much of the higher-level archi-
tecture is quite general, and applicable to different problems. SRTA,
for instance, uses the domain-independent TAMS language as its ba-
sis, which can and has been used successfully in a variety of domains.
The SPAM negotiation protocol can be used to solve new distributed,
interdependent resource allocation problems by implementing a suitable
objective function. SPAM’s technique of allowing conflicts to exist and
be resolved by local control concurrent with a more complete allocation
search can be used in nearly any environment where the participants are
tolerant of such uncertainty. Our organizational structure as a whole is
quite specific, but individual aspects such as partitioning, task migra-
tion and local control are general and applicable to a variety of different
distributed architectures.

Although not mentioned here, the use of both general and DSN-
specific debugging tools was of critical importance. The complexity of
individual agents in addition to their distributed interactions made it
very difficult to identify symptoms and diagnose problems. A number of
visualization and debugging tools were therefore used to facilitate this
process. Qur experiences using these tools are briefly covered in the
Visualization chapter earlier in this book.

Our solution as described covers many different aspects of the dis-
tributed sensor interpretation problem, including several which we did
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not anticipate when starting this project. Despite this, there remain
parts of the domain which we have not yet explored that seem to offer
the possibility of additional intellectual contribution. For example, while
the sensors in this environment had several different modes of operation
with different execution characteristics, in practice it rarely if ever made
sense to use anything but the cheapest, fastest measurement type. In
addition, the sensor population as a whole was discriminated only by
location and orientation, and not by differing capabilities or qualities. If
the sensors were more heterogeneous, or if they offered a range of useful
modes of operation, it would offer the opportunity for a richer reason-
ing process. Agents would need to determine not only which sensors to
use, but which modes they should operate in, and which functionalities
should be exploited, and to trade off these choices against the addi-
tional costs they would likely incur. Related to sensor heterogeneity,
the ability discriminate among targets also presents a new dimension in
which to reason. If targets were identifiable, and correlated with either
known characteristics or expected routes, this information would allow
agents the possibility of a more effective tracking procedure by exploiting
such knowledge. As mentioned earlier, the notion of distance-attenuated
communication could also create an interesting environment, requiring
agents to more directly reason about the consequences of long-distance
agent relationships.
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